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The density fluctuations of one-dimensional Lennard-Jones systems are investi- 
gated by molecular dynamics simulation. The full Lennard-Jones potential is 
compared to the repulsive Lennard-Jones potential. It is found that the behav- 
ior of the density fluctuations at small wave vectors is determined by the 
repulsive portion of the potential. The variation of the fluctuations with density 
is explained. It is shown that these systems do not display hydrodynamics. 
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1. INTRODUCTION 

In a study by Bishop and Berne (1) of the density fluctuations of a high- 
density one-dimensional Lennard-Jones system, it was found that these 
fluctuations decayed like a damped cosine with frequency, ~0 k, and lifetime, 
~-~, such that the dispersion relation was very similar to that of a harmonic 
chain and ~'k went as  k -1 /3  at small k. Their ~'k result was consistent with 
the t -3 asymptotic behavior of the velocity autocorrelation function. (2-5) 
Since hydrodynamics requires (6) .rk~k -2, it was concluded that the one- 
dimensional Lennard-Jones system did not display a hydrodynamic decay. 
In this note, the density fluctuations are calculated for high and low 
densities and for the full (FLJ) and repulsive (RLJ) Lennard-Jones poten- 
tials. It is found that the propagating mode present at high densities 
disappears at lower densities. The existence of a diffusive mode for low- 
density systems is established. Its lifetime goes as k -1/3. In addition, the 
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density fluctuations are very similar for both the FLJ and RLJ. Thus, the 
repulsive portion of the potential is the major factor in determining the 
relaxation of the density fluctuations. 

. METHOD 

Molecular dynamics calculations were done for both the FLJ and the 
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were calculated concurrently with the trajectory. These are defined by 

(5) 

where N is the number of system particles, N O the number of time steps the 
data is averaged over V,.2(j) ,xi( j) ,  and F/(j) are the velocity squared, the 

RLJ. These have the form 

FLJ: U ( x ) = 4 [ ( 1 / x ) l Z - ( 1 / x ) 6 ] ,  x < 2 . 5  

= 0,  x > 2 .5  ( 1 )  

This is shifted by subtracting U(2.5) for x < 2.5. 

RLJ: U ( x ) = n [ ( 1 / x ) 1 2 - ( 1 / x ) 6 + l / 4 ] ,  x < 2 1 / 6  

= 0, X > 21/6 (2) 

where x is the molecular separation and all results are given in reduced 
units. (7) Starting with N particles (N = 100) one-dimensional number densi- 
ties, p, of 0.65 and 0.935 were selected for study. The particles were initially 
placed on lattice sites and the velocities selected from a Maxwellian 
distribution by the Box-Muller (8) method. Newton's equations of motion 
were integrated by Verlet's (9) scheme with step size 0.005. Periodic bound- 
ary conditions were imposed and the minimum image convention was used 
for the potential. 

A "box scheme" is not needed for one-dimensional calculations be- 
cause of the small number of pair interactions which must be considered. 
The first 900 equilibration steps were discarded and the subsequent 12, 000 
equilibrium configurations used for later analysis. However, the potential 
energy per particle, U, the total energy per particle, E, and the pressure, P, 
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position, and the force, respectively, of the ith particle at t he j th  time step, O 
is the number density, and R 0 the relative distance between particles i and 
j .  The temperature, T, is given by T = 2(E - U). 

3. RESULTS 

The simulation results are presented in Table I. They may be com- 
pared to the data of Bishop, De Rosa, and Lalli, (7) who studied 1000 
particles at the same densities. They used the Runga-Kut ta -Gi l l  technique 
to integrate Newton's equation and averaged over about 1400 steps of size 
0.005. Since they did not shift their FLJ  by U(2, 5), it is best to compare 
RLJ states. For a density of 0.65, they found U = 0.048, E = 0.411, T = 
0.725, and P = 1.40 compared to our U = 0.050 ___ 0.03, E = 0.415 +__ 0.001, 
T =  0.730, and P - - 1 . 4 2  _+ 0.01, whereas for a density of 0.935 they re- 
ported U =  0.443, E =0.803,  T =  0.722, and P = 11.21 compared to 
0.441 + 0.001, E = 0.804 _ 0.001, T = 0.726, and P = 11.18 +__ 0.01. The 
agreement is excellent. By studying a smaller system, one can obtain more 
time steps for the same computer costs. Hence, collective properties such as 
the density fluctuations can be calculated more accurately. 

The collective modes can be determined by calculating the density- 
density time autocorrelation funciton, F(k, t): 

F(k,t)= -~ • ~exp{ik[xj( t ) -  x,(O)l ) (6) 
J 

where k is the wave vector and the ( )  indicates an ensemble (or time) 
average. The periodic boundary conditions for a line of length L fix the 
smallest wave vector, kmin,  a s  2~r/L. Hence, one finds that for 0 -- 0.935, 
kmin  = 0.0588 and for 0 = 0.65, kmi n = 0.0408. In general, the Fourier 

Table I. The Simulation Results 
i i i  I 

Oa Range  b U c E d pe Tf  

0.65 2.5 - 0.493 +_ 0.008 

0.65 21/6 0.050 +__ 0.003 
0.935 2.5 - 0.561 +__ 0.001 

0.935 21/6 0.441 + 0.001 
i 

ap is the n u m b e r  density, 
b range is the potential  range, 
c U is the average potential  energy per  particle, 
dE is the average total energy per  particle, 
e p is the average pressure, 
f T  is the temperature.  

- 0.105 _+ 0.001 0.96 + 0.04 0.776 

0.415 + 0.001 1.42 + 0.01 0.730 
- 0.187 + 0.001 10.50 +_ 0.06 0.748 

0.804 -+ 0.001 11.18 --_ 0.01 0.726 
i I 
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transform of F(k, t), the dynamic structure factor, S(k, ~), can have (6) a 
propagating mode and a diffusive mode as k--> 0 (e.g., the hydrodynamic 
regime). 

In Figs. 1 and 2, F(k, t) is plotted for k = 7*kmi n. The results are very 
similar for both the FLJ and the RLJ systems. Note, however, that at 
p = 0.935 there is a long-lived oscillating mode but that at p = 0.65, there is 
just a damped mode. The Fourier transform of these functions contains a 
propagating mode and, perhaps, a small intensity diffusive mode, for 
p = 0.935 but only a diffusive mode for p = 0.65. The high-density results 
agree with the findings of Bishop and Berne. (1) The dispersion relation for 
this system has been determined by plotting the position of the o~ v a 0 
S(k, o~) peak vs. k. This is shown in Fig. 3. The behavior for both the FLJ 
and RLJ systems is similar. This is in agreement with the data of Haan, 
Mountain, Hsu, and Rahman (1~ for three-dimensional systems. Hence, the 
repulsive part of the potential is the major factor in determining the small 
wave vector properties of the density fluctuations. 

The different behavior of the modes as a function of density can be 
explained. At high density Bishop and Berne ~ found that the dispersion 
relationship was in close agreement with that expected for a one- 
dimensional harmonic lattice. This was consistent with the "solidlike" 
shape of the pair correlation function, g(x), which they reported. Yoshida, 
Shobu, and Mori have made an exact, analytical calculation of S(k, co) for 
a perfect, one-dimensional harmonic "liquid." They have shown that there 
is only a propagating mode for this system. Visscher 02) has demonstrated 
the relationship between the k dependence of the mode lifetime and the 
asymptotic time behavior of the velocity autocorrelation function, ~(t), e.g., 
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The density autocorrelation function vs. time for p = 0.65 and for the RLJ and FLJ 
systems. Time steps are in number of steps of 0.005. 
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The density autocorrelation function vs. time for p = 0.935 for the RLJ  and  FLJ 
systems. Time steps are in number  of steps of 0.005. 
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Fig. 3. The dispersion relation between the collective mode frequencies and  the wave vector 
for P = 0.935 and  for the RLJ  and FLJ systems. 
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Table II. The Mode Lifetime Behavior for 
Small Wave Vector for the Diffusive Mode: 
The Product ~kk ]/3 as a Function of Wave 
Vector for p = 0.65 and for the RLJ and FLJ 

RLJ FLJ 

k//kmin "rk(k/krnin) 1/3 "rk(k//kmin) l/3 

4 2.65 3.17 
5 2.44 2.85 
7 2.73 2.39 
8 2.50 2.22 
10 2.69 2.69 

if ~ ( t ) ~  t-1/n then r g o  k -n. Since Mazur and Montrol103) have proven 
that +(t) ~ t -  1/2 for this system, ~'k will go as k-2 and the perfect harmonic 
liquid will display hydrodynamics. 

However, Bishop and Berne (1) found ~-ko k -1/3 consistent with ~(t) 
--~ t -3. It has been shown by Lebowitz, Percus, and Sykes, (14) that F(k, t) 
for a one-dimensional system of hard rods does not display damped 
oscillatory behavior unless the velocity distribution contains some d func- 
tions. Moreover, even for a d-function distribution, there exists no single 
velocity (sound velocity) describing the propagation of a disturbance be- 
cause each particle velocity is conserved. 05) 

The g(x) for p = 0.65 reported by Bishop, De Rosa, and Lalli (7~ is 
"liquidlike" and, thus, it is not surprising that the one-dimensional har- 
monic lattice results are not at all applicable for this density. The data of 
Lebowitz, Percus, and Sykes  (14) for p = 0.50 and a Maxwellian velocity 
distribution are similar to the O = 0.65 results. The lifetime of the modes 
have been calculated from the half-width of S(k,o~) at half-maximum. 
Table II demonstrates that ~-k~k-1/3, within the scatter of the data. Thus, 
the diffusive lifetimes do not agree with hydrodynamic predictions but are 
consistent with the ~ ~ t -  3 decay. 

4. CONCLUSION 

One-dimensional Lennard-Jones systems do not display hydrodynam- 
ics because the lifetimes of the collective modes ---~k -1/3 instead of k -2. 
This mirrors the behavior of ~(t) which ~ t -3 for these systems. The 
repulsive portion of the potential is the major factor in determining the 
short wave vector properties of the density fluctuations. This is in contrast 
to the influence of the attractive part of the potential on single particle 
motions ~7~ [e.g., ~(t)]. 
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